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Summary

We present two similar variational methods for mul-

tiphase segmentation of complex weakly structured

3D images affected by local and global intensity inho-

mogeneities as is observed in micro-tomography. The

methods use a fixed number of classes and utilize lo-

cal image averages as region descriptors to produce

per voxel posterior probabilities a la Hidden Markov

Measure Field Models (HMMFM). The methods use a

weighted Total Variation (wTV) and weighted Dirich-

let (squared gradient) as regularizers respectively.

Our problem

We aim to segment X-ray computerised micro and

nanotomograph samples of geological origin. Sam-

ples contain homogeneous materials with flat surfaces

and edges, but their shapes are rather complex and

not well-structured. We model images with these

properties as a function u : Rd → R, with d = 2, 3

u = L

(
n

∑
i=1

αχΩi

)
+ η (1)

where Ωi is the ith individual segment and αi its in-

tensity. L models blur and partial volume effects. η

represents additive bias field and noise, which is con-

sidered Gaussian in high-photon-count synchrotron

imaging. Figure 1 shows an example of an experimen-

tal dataset with local bias fields.

Figure 1: Experimental dataset with highlighted intensity imhomogeneity
areas with highlighted intensity imhomogeneity areas.

Our approach

– As in our previous work, we use a local mean es-

timate in the data fidelity term to account for ob-

served intensity inhomogeneities.

– The smoothing kernels can be any rotationally sym-

metric kernel, but we have used Gaussian and mov-

ing average kernels, of supervised extent (standard

deviation and radius), based on the variation degree

of the unknown bias field.

– To accomodate uncertainty in label estimates, we

use a soft labelling approach, formalized by

HMMFM. Additionally, to deal with partial volume

effects at segment interfaces, we propose to use a

Tikhonov regularization on the label field. Other-

wise we use TV regularization.

– To avoid oversmoothing strong edges, we propose

to locally weigh the regularization by any chosen

constant function, depending on the image.

Model overview
Our proposed energy formulations are

EwTV(c, v) =
1
2

n

∑
i=1

∫
Ω

g ∗
[
(u− ci(x))2vi

]
(x) dx + µJh(v),

EwQ(c, v) =
1
2

n

∑
i=1

∫
Ω

g ∗
[
(u− ci(x))2vi

]
(x) dx +

µ

2
||Dv||2h

v ∈ Σn(a.e.)

with Σn being the standard simplex, ||Dv||2h =

∑n
i=1
∫

Ω h|Dv|2, and Jh given as

Jh(v) =

{∫
Ω ψ∗∗(x, Dv) v ∈ BVh(Ω, Σn)

+∞ v 6∈ BVn(Ω, Σn),

where ψ∗∗ is the convex relaxation w.r.t. p ∈ Rn×d in

ψ(x, p) =

{
h(x)|p| i f p = (ei − ej)⊗ p
+∞ otherwise.

(2)

and BVh(Ω, Σn) = {v : Ω ← Σn, vi ∈ BVh(Ω)}, BVh(Ω) be-
ing the space of weighted total variation of u, Jh(u) =

∫
Ω h|Du|,

the latter given as

J(u) = inf
{∫

Ω
u div φ dx, φ ∈ C1

c (Ω, Rd), ||φ(x)|| ≤ h(x)
}

(3)

Algorithm and optimization
We use an alternate approach for optimizing the two energy
formulations for c and v, which is outlined in Algorithm 1.

Algorithm 1: Sketch of the algorithms.

Input: Input image volume u, number of classes n, weight
parameter µ, kernel g and maximum number of iterations
LRS.

Output: Segmentation (v, c) of u .
Initialisation: Run a K-means or Otsu clustering to produce
(c0, v0) from u. For EwTV, an extra variable v̄0 is initialised
as v0 and dual variable ξ is initialised as 0, see below.
for r = 0 to LRS do

Solve for cr+1 from u and vr.
Solve for vr+1 from u and cr+1.

end for

The updates on c are computed from

ci(x) =
(uvi) ∗ g(x)

vi ∗ g(x)
, x ∈ supp vi. (4)

For updates on the HMMFM variable v for EwTV we use
the framework of Chambolle, Cremers, and Pock (a convex

approach to minimal partitions, 2011), modified to include
our weight function h.

E r
i+1 = PKh (E

r
i + τr∇vr

i )

vr
i+1 = PLn (v

r
i + tr (divE r

i+1−∇vED))

vr
i+1 = 2vr

i+1− vr
i ,

where PKh is the orthogonal projection onto the set
Kh =

{
E ∈ C1

c (Ω, Rn×d), E(x) ∈ Kh(x), ∀x ∈ Ω
}

, with
Kα = {q = (qi, . . . , qn)T ∈ Rn×d : |qi − qj ≤ α, ∀i < j|} and PLn

orthog-
onally projects to the standard simplex. A simple proximal
method is used for EwQ and its gradient is given by

∇vEwQ = ∇vED − µ∇ · (hDv) (5)

ED is here the shared data term of our two energy functions
and ∇· the vector divergence operator. The implicit descent
step therefore becomes vr = vr−tr

(
∇vEwQ−ν∇·

(
h∇vr

))
, i.e.

we solve the following equation

(
−ν∇ · h∇+ t−1

r id
)

vr+1 = t−1
r vr −∇vED. (6)

In the following we set the structure function as

h(x) =
1

1 +
(
|∇(gσ∗u)|

κ

)2 (7)

Experimental validation
We evaluate results on a synthetic volume consisting of randomly distributied balls

in a volume of size 2503, with noise and bias fields, expecting 4 segments.

Figure 2: Row 1: Synthetic data and segmentation. Row 2: Experimental data, EwQ, and EQ segmentations
respectively.

Quality measures
We report Dice score index, true positive rate (TPR), true negative rate (TNR),

and positive predictive value (PPV). We compare with our previous unweighted

work using nearest neighbour kernels, as they slightly outperformed Gaussian ker-

nels. We also compare with the regular piecewise constant Mumford-Shah, Otsu’s

thresholding method and a dual filtering approach, that utilizes an unsharp mask

and median filter before threshoding, that is popular in geosciences.

Table 1: DSC, TPR, TNR, and PPV values for the segmentation results of the synthetic volume, using the selected
methods.

Method kernel DSC TPR TNR PPV

Tikhonov NN 0.989286 0.97406 0.99336 0.98296

TV NN 0.984218 0.96703 0.98956 0.97013

W-Tikhonov NN 0.990615 0.97918 0.99376 0.98325
W-TV NN 0.980704 0.92985 0.97880 0.94153

Method - DSC TPR TNR PPV

PCMS - 0.958090 0.88087 0.98259 0.94811

Otsu - 0.894342 0.78868 0.93196 0.80911

Dual filter - 0.954899 0.90980 0.96833 0.91485


