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Summary
We provide an algorithm that achieves the optimal (up

to constants) finite time regret in both adversarial and

stochastic multi-armed bandits without prior knowl-

edge of the regime and time horizon. The result pro-

vides a negative answer to the open problem of whether

extra price has to be paid for the lack of information

about the adversariality/stochasticity of the environ-

ment. In addition, the proposed algorithm enjoys im-

proved regret guarantees in two intermediate regimes:

the moderately contaminated stochastic regime defined

by Seldin and Slivkins [2014] and the stochastically con-

strained adversary studied by Wei and Luo [2018].

Multi-Armed Bandit (MAB)

Stochastic MABs
– Stochastic MABs [Thompson, 1933, Robbins, 1952,

Lai and Robbins, 1985] are sequential decision prob-
lems:
Initialisation: Set of arms {1, . . . , K} with unknown

distributions pi over [0, 1]

Game:
for t = 1, . . . (, T) do

Select arm It.

Sample loss `t ∼ pIt.

Observe and suffer loss `t.

end for
Target: Minimize ∑T

s=1 `s.
– The performance of an algorithm is measured in

terms of simple regret:

E
[
RegT

]
:= E

[
T

∑
t=1

`t

]
− T ·min

i
E [`t|It = i]

– The difficulty of a stochastic MAB depends on the

gaps:

∆i = E [`t|It = i]−min
j

E [`t|It = j]

– The lower bound for any consistent algorithm is:

E
[
RegT

]
≥ Ω

 ∑
∆i>0

log(T)
∆i


– the lower bound is matched by an upper bound for

algorithms such as UCB:

E
[
RegT

]
≤ O

 ∑
∆i>0

log(T)
∆i



Adversarial MAB
– Adversarial MABs [Auer et al., 2002] extend bandits

to non-stochastic environments.
Initialisation: Set of arms {1, . . . , K}.
Game:

for t = 1, . . . (, T) do
Adversary: Select hidden vector `t ∈ [0, 1]K

Agent: Select arm It.

Observe and suffer loss `t,It.

end for
Target: Minimize ∑T

s=1 `s.

– The performance of an algorithm is measured in

terms of expected regret:

E [RegT] := E

[
T

∑
t=1

`t−min
i

T

∑
t=1

`t,i

]
– this is always larger than the simple regret:

E [RegT] ≥ E
[
RegT

]
– The lower bound for any consistent algorithm is:

E [RegT] ≥ Ω
(√

KT
)

– the lower bound is matched by an upper bound for

algorithms such as INF:

E [RegT] ≤ O
(√

KT
)

Problem

Motivation
– in many real world applications, it is unclear if the

problem is fully stochastic

– the worst case guarantee for adv. MABs is signifi-

cantly worse than for stoch. MABs: log(T)�
√

T

– the algorithms achieving optimality in one regime

might not be good for the other

Question
Can the same algorithm achieve optimality in both
regimes without knowing in which regime it oper-
ates?

Previous results
Table 1: Upper bounds for previous algorithms.

Algorithm Stoch. Adv.

UCB O
(

∑∆i>0
log(T)

∆i

)
T

INF O
(√

KT
)

O
(√

KT
)

EXP++ O
(

∑∆i>0
log(T)2

∆i

)
O
(√

K log(K)T
)

BROAD-OMD O
(

K min∆i>0
log(T)

∆i

)
O
(√

KT log(T)
)

SAPO∗ O
(

∑∆i>0
log(T)

∆i

)
O
(√

KT log(T)
)∗

∗requires knowledge of the time horizon T or additional log(T) on either side

– all algorithms have at least an extra log(T) term on

one of the sides

– it is impossible to have RegT ≤ O
(√

KT
)

with high

probability in the adversarial regime if E
[
RegT

]
≤

O
(

∑∆i>0
log(T)

∆i

)
holds in the stochastic regime [Auer

and Chiang, 2016]

– it is impossible to have optimal performance for

stochastic and adversarial bandits if we only care

about identifying the best arm with the highest prob-

ability after T rounds [Abbasi-Yadkori et al., 2018]

Solution
Yes it is possible. The following algorithm:

Algorithm 1: Tsallis Online Mirror Descent.

Initialisation: L0 = 0K

for t = 1, . . . do
choose wt = arg maxw∈∆K

{
−〈w, L〉+ ∑i

√
wit
}

sample It ∼ wt

construct ˆ̀t : ˆ̀t,i =
`t,iI{It=i}

wt,i

update L̂t = L̂t−1 + ˆ̀t

end for
achieves a regret of

Table 2: Upper bounds for TOMD.

Algorithm Stoch. Adv.

TOMD O
(

∑∆i>0
log(T)

∆i

)
O
(√

KT
)

Proof
See our paper https://arxiv.org/abs/1807.07623
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