
Summary
We are working on a method to 

reconstruct a 3d mesh of an object, using 

images from a structured light scanner 

directly. 

We do this by starting out with an initial 

guess of the geometry, which enables us 

to compute what the projected images 

should look like to the cameras. 

With the real image and the rendering, we 

can compute a residual image per pattern 

and camera. 

We then let an optimization algorithm to 

update the vertex positions of the mesh, 

with the goal of minimizing the sum of 

squared residuals.

Future work
It would be helpful to allow the model to modify the mesh 

by inserting and removing vertices from the mesh where 

this is needed. 

In addition to this we’re currently just projecting the 

projectors x-coordinate directly on the mesh. We will 

replace this with a phase shifting strategy which is more 

transferrable to a real camera-projector setup.

The method is currently also very sensitive to the starting 

mesh, and we hope to find a fast method that can create a 

rough version of the correct geometry, as our method just 

needs to be near the correct solution in order to converge.

Mesh quality
Without any penalty on the mesh quality, the resulting 

meshes often have overlapping triangles, varying 

triangle sizes and sharp corners, which motivates us 

to penalize bad meshes.

We have attempted to regularize the mesh by 

penalizing the deviation of a triangle’s area from the 

mean triangle area. This improves quality, but still 

yields very sharp angles and long edges, and triangles 

move around in rotation motions when it is applied, as 

seen in Figure 2.

Therefore we introduced a penalty on edge lengths, 

where each edge acts like a spring. The result of this 

can be seen in Figures 3-5.

In the future we hope to introduce methods for 

remeshing in our optimization pipeline, such that we 

every 𝑛 iterations allow the insertion and removal of 

vertices. 

This should preferably also be able to introduce and 

remove holes in the mesh, as we are unable to modify 

the topology of the starting mesh during the 

optimization.

Results
As can be seen in Figures 1-3, 5, our method is able to 

converge fully to the desired mesh in a simple case. The 

rendering of all fifty cameras, and the solving for a step 

size step is done on the GPU at a rate of nine iterations 

per second, which results in interactive performance.

The Sphere to Bunny experiment uses around fifty 

iterations to converge, but still has thin strands 

connecting the ears, which means this case needs 

remeshing in order to converge completely to the correct 

result.

Motivation
Traditional methods for surface reconstruction are based on computing a lot of points 

that lie on the object, and fitting a surface to these.

This has the following disadvantages:

• Information lost because surface fitted to points, not original data

• Tradeoff between smoothing and fitting well to points

• Difficult to get confidence intervals

Figure 1. Sphere observed by fifty cameras is optimized to look like cube. Only loss is pixel differences. Iteration numbers in orange.

Figure 5. Sphere observed by fifty cameras is optimized to look like cube. Penalizing both pixel differences and edge lengths gives better final mesh. Iteration numbers in orange.

Method
The entire problem is formulated as a nonlinear 

least squares problem in terms of the vertex 

positions in the mesh, 𝑣. 

We compute the difference between the 

rendering in the 𝑖’th pixel of the 𝑐’th camera,

𝑓𝑐,𝑖 𝑣 , and the value of the corresponding

ground truth pixel. 

Using closed form solutions for the analytical 

derivatives of 𝑓𝑐,𝑖 𝑣 , we are able to do fast 

gradient evaluations.

We have solved our problem using Levenberg–

Marquardt, which gives much faster 

convergence than line search, even for our 

simple test cases.

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑀𝑒𝑠ℎ = argmin
𝑣



𝑐=1

#𝑖𝑚𝑎𝑔𝑒𝑠



𝑖=1

#𝑝𝑖𝑥𝑒𝑙𝑠

𝑓𝑐,𝑖 𝑣 − 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑐,𝑖
2

Area penalty Sphere to BunnyEdge length penalty

Figure 2. Sphere to cube with triangle area penalty Figure 3. Sphere to cube with edge length penalty Figure 4. Sphere to bunny with triangle area and edge length

penalty


