UNIVERSITY OF COPENHAGEN

FEATURE LEARNING BASED ON VISUAL SIMILARITY TRIPLETS Contact Information: IN MEDICAL IMAGE ANALYSIS Universitetsparken 1 2100 København

A case study of emphysema in chest CT scans

Silas N Ørting, Jens Petersen, Veronika Cheplygina, Laura H Thomsen, Mathilde M W Wille, Marleen de Bruijne

Objective

Can visual similarity triplets be used to learn an emphysema-sensitive embedding of CT scans?

Motivation

Assessing absolute emphysema extent is difficult and subject to substantial rater variability. Assessing relative

+45 51746394

silas@di.ku.dk

similarity is potentially easier and more informative.

Setup

Bounded triplet violation loss

- Low-dose chest CT of 1947 from DLCST
- •974 subjects in training group and 973 subjects in test group.
- Visual similarity triplets simulated from expert assessed emphysema
- 2D embedding learnt with 3-5 layer CNNs

 $\Delta = \delta(x_i, x_j) - \delta(x_i, x_k)$ $\mathcal{L}_{l,u}(\Delta) = \begin{cases} 0 & \text{if } \Delta < l \\ 1 & \text{if } \Delta > u \\ \frac{\Delta - l}{u - l} & \text{otherwise} \end{cases}$

Untrained

Uniform sampling

Supervised sampling

Triplet satisfication performance

	Test triplet selection method				
Sampling scheme	All	0%	0-5%	0-25%	0-50%
Uniform	41.0	40.2	30.0	19.0	11.6
Supervised	39.3	39.0	26.4	14.6	9.4
Untrained	48.5	48.9	44.3	37.2	29.2

Acknowledgments: Danish Council for Independent Research and the Netherlands Organization for Scientific Research

Conclusion

- CNNs can learn an emphysema sensitive embedding from visual similarity
- Uniform sampling yields almost as good performance as supervised sampling

• Next step is large-scale crowdsourcing of similarity triplets