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• A little on diffusion imaging…

• What fiber tracking is…

• What project is about…

• What it has to do with optimisation …



Wrapped Gaussian process regression on Riemannian manifolds

Anton Mallasto & Aasa Feragen

August 3, 2018

Gaussian process regression is a popular tool in non-parametric regression that provides meaningful un-
certainty estimates. In this work, we consider a generalization of the method on Riemannian manifolds
employing wrapped Gaussian distributions.
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Optimization for multi-scale 3D reconstruction of 
ptychographic X-ray tomography data
Azat M. Slyamov, Tiago Ramos, Jens W. Andreasen
Technical University of Denmark, Department of Energy Conversion and Storage, 4000 Roskilde, Denmark



DTU Energy, Technical University of Denmark

Optimization for multi-scale 3D reconstruction of 
ptychographic X-ray tomography data
Direct reconstruction in 3D requires large computational recourses and/or time consuming reconstruction
algorithms. Here, we propose a multi-scale approach for reducing convergence time by fast reconstruction
of low-resolution image and its further application as an input guess for high-resolution reconstruction.
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Coherent X-ray diffraction imaging
𝐼𝚯 ≅ ℱ 𝜓𝚯
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DTU Energy, Technical University of Denmark

Optimization for multi-scale 3D reconstruction of 
ptychographic X-ray tomography data
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Single-scale reconstruction

Multi-scale reconstruction

Reconstruction from scaled data



Physical Model Based Segmentation
A method for assessing uncertainty in tomographic structural analysis result

Elise Otterlei Brenne*

elbre@dtu.dk

*Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark 
Supervisors:  Peter Stanley Jørgensen*, Vedrana Andersen Dahl*, Ali Chirazi#

#Thermo Fisher Scientific, Bordeaux, France

Segmented data3D tomogram dataProjection images

Data acquisition Reconstruction

Material parameters

x ?+_
-Phase volume fractions 
-Interface areas
-Tortuosity
-Permeability
-Electrical conductivity...

Segmentation Measurements

Sample

Problem

Errors will occur and propagate through the sifferent steps of the 
tomographic pipeline

This makes it challenging to assess the uncertainty in the final result

How to assign meaningful error bars to the extracted material 
parameters?
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Measurements through physical modelling

   

Basic physical model:
Gaussian mixture model and 
added Gaussian noise, fitted to 
1D intensity histogram

Parameters:
- Phase volume fractions
- Noise levels

Extended physical model:
Model fitted to 2D intensity-
gradient histogram

Parameters:
- Interface areas
- Resolution



Drifted FIB-SEM Images

Correcting Drifted FIB-SEM Images
using a Model-Based Registration Approach

Hans JT Stephensen, Sune Darkner, Jon Sporring

Correcting Drifted FIB-SEM Images using a Model-Based Registration Approach



Drifted FIB-SEM Images

Correcting Drifted FIB-SEM Images
using a Model-Based Registration Approach
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Correcting Drifted FIB-SEM Images using a Model-Based Registration Approach



Direct Segmentation from 
Projections
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Our approachExisting reconstruction approach
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Optimize an energy 
involved in a curve

min E(C) = ∑
θ

∫S
(p(θ, s) − μ ̂p(θ, s))2ds

̂p(θ, s) = ∫int(C)
δ(Lθ(x, y) − s) dxdy
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Multiphase Local Mean Geodesic Active Regions
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Addressed problem

Jacob Hansen — Multiphase Local Mean Geodesic Active Regions
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Proposed methods
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Using a modified (now more general) version of the

Chambolle, Crembers, and Pock’s framework and a simple

proximal method to optimize the two energy functions,

respectively.

Jacob Hansen — Multiphase Local Mean Geodesic Active Regions
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Results

Jacob Hansen — Multiphase Local Mean Geodesic Active Regions
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Tuning the hyperparameters in an 
MR patch-based CT metal artifact 

reduction algorithm

Jonathan Scharff Nielsen (DTU, RGH), Jens M. Edmund (RGH, 
NBI) and Koen Van Leemput (DTU, MGH)

● Metal implants lead to CT metal artifacts

● We've created a generative model of CT 
values, corrupted CT values and MR patches 
for estimating CT values using Bayesian 
inference



  

Hyperparameters

● The model uses kernel density estimation along 
with a noise model of the CT artifacts

● The problem: Hyperparameters need picking; 
an optimisation problem! Come hear about 
Empirical Bayes and the EM-algorithm. 



An Optimal Algorithm for

Stochastic and Adversarial

Bandits

Julian Zimmert & Yevgeny Seldin

August 6, 2018

University of Copenhagen
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Modelling Time Evolution of Medical Images

Minimize:

E(vt) =

Z 1

0

kvtk2dt + kI0 � ��1
1 � I1k2L2

With deformations:
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Line Kühnel, Stefan Sommer & Alexis Arnaudon — 20-05-2016
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Limitations of Cross-Lingual Learning from Image Search
Lexicon induction from image data: Does it work for adjectives
and verbs?

mug: Tasse: traurig: gehen:

1 / 1



Multigrain crystallography: 
Indexing algorithms for 

multiphase polycrystalline
Cu2ZnSnS4 solar cells

� Kesterite (CZTS) solar cells

� Structural characterization
of the absorber layer

� Crystallographic phases of 
the absorber layer

� Multigrain crystallography

� 3D X-ray diffraction

� Indexing algorithms

� Grain mappingMariana Mar Lucas
DTU Energy

Technical University of Denmark

Main topics:

(Oddershedde, 2011)



Martin Nørgaard
NRU, Copenhagen University Hospital, Rigshospitalet

Motivation - Is there a problem?



Martin Nørgaard
NRU, Copenhagen University Hospital, Rigshospitalet

[Tabachnick and Fidell, 2001] – “Do not expect 
garbage in, roses out”

Optimization of Preprocessing Strategies in Positron 
Emission Tomography (PET): A [11C]DASB Study

[Churchill and Strother, 2016] 

Optimization?[Norgaard et al., 2018 in prep] 



Sperm quality is declining

The Danish Fertility Society estimates that 1/11 children are conceived with artificial reproduction technology

Motility an important factor

186 
million 
affected

40-50%
due to male
factors

Mette Bjerg Mortensen (DIKU) Saving the Human Race 14/8/2018 1 / 2



First ever 4D tomographic reconstruction of a sperm cell

?

Spermatozoa

Sinogram

Reconstruct

Mette Bjerg Mortensen (DIKU) Saving the Human Race 14/8/2018 2 / 2



DTU Energy, Technical University of Denmark

Reconstructing images from in situ small
angle x-ray scattering experiments

1
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Acceptor

Donor

Exciton

Efficiency and life times are too low at this stage.

Understand the morphology of the active layer 
and how to tweak it.

Organic solar cells are:
Cheap, non-toxic, flexible, colourful, and shows the 
potential to mass produced.

Few pioneering companies, can not sustain with out 
founding. 

Michael Korning Sørensen, DTU Energy



DTU Energy, Technical University of Denmark

What we do, and why I am here

2

Roll to roll printing in 
situ x-ray scattering.

Several parameters at 
‘one’ experiment.

2D – detector with temporal 
information.

Contain information of the 
morphology.  

Every element and shape scatters differently. 

Currently: an iterative model.

Aim: rewrite as a convex optimisation 
problem.



Optimization



Deep Diffiomorphic Transformer Networks (DDTN)
Nicki Skafte Detlefsen, Oren Freifeld, Søren Hauberg

Spatial transformer networks (STN’s)

30-07-2018 Section for cognitive systems, DTU Compute

Basic idea:
Incorporate
diffiomorphic
transformations
into STN’s

The network learns
a squarification of 
facial images

”Revertability↔Invertability” hypothesis
Optimizing non-invertible STNs is prone to instability

Optimization experiment:

Non-invertible

Invertible



  

Graph Convolution Layers

Encoder

(1) (2) (T)

H(0)=X H(1) α

Node Features, X
NxF

Decoder

H(T)=Z

A
I

Extraction of Airways using Graph Neural Networks
Raghavendra Selvan
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Topological Di↵erences in Deformable
Registration

?
Rune Kok Nielsen — Explicit Modeling of Singularities in Deformable Registration — August 1, 2018
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Composition with explicit topology changing
deformation

Rune Kok Nielsen — Explicit Modeling of Singularities in Deformable Registration — August 1, 2018

Slide 2/3
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Result

Rune Kok Nielsen — Explicit Modeling of Singularities in Deformable Registration — August 1, 2018
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Feature learning based on visual similarity triplets in
medical image analysis

A case study of emphysema in chest CT scans
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SS: OPTIMIZATION IN IMAGE ANALYSIS SIMON LEMINEN MADSEN

14 AUGUST 2018 PHD STUDENT
DEPARTMENT OF ENGINEERING

AARHUS
UNIVERSITY

PRODUCING ARTIFICIAL DATA SAMPLES USING 
GENERATIVE ADVESARIAL NETWORKS

Motivation:

• Performance of machine learning algorithms 
depends heavily on the available data

• Data acquisition and annotation is tedious, 
time-consuming and error-prone.

Source: https://xkcd.com/1429/



SS: OPTIMIZATION IN IMAGE ANALYSIS SIMON LEMINEN MADSEN

14 AUGUST 2018 PHD STUDENT
DEPARTMENT OF ENGINEERING

AARHUS
UNIVERSITY

PRODUCING ARTIFICIAL DATA SAMPLES USING 
GENERATIVE ADVESARIAL NETWORKS

Method: Results:

Source: 
https://github.com/hwalsuklee/tensorflow-
generative-model-collections
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PREDICTING DRY MATTER 
COMPOSITION OF GRASS
CLOVER LEYS USING DATA SIMULATION 
AND CAMERA-BASED SEGMENTATION
SØREN SKOVSEN, MADS DYRMANN, JØRGEN ERIKSEN, RENÉ GISLUM, 
HENRIK KARSTOFT, RASMUS N. JØRGENSEN
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SEGMENTATION ON REAL IMAGES
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Adaptation to Easy Data in Prediction with 
Limited Advice
Tobias Sommer Thune & Yevgeny Seldin
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Adapting to Easy Data in Prediction with
Limited Advice

Tobias Sommer Thune & Yevgeny Seldin

Department of Computer Science, University of Copenhagen
contact: tobias.thune@di.ku.dk

Motivation

In Online Learning we consider the problem of choosing between a number of possible
actions, for instance medical treatments, trading strategies or scientific models. The
learner faces a stream of problem instances, for example patients, with the goal of using
the feedback from each instance to improve the decision strategy in the future.

To be able to make good decisions, the possibilities need to be explored. This however has
a cost since the exploration is done by trying out di↵erent actions, even suboptimal ones.
A good strategy balances this exploration/exploitation tradeo↵.

Commonly strategies are characterised by their worst case performance. Here we consider
how the learner can exploit easier learning scenarios and thereby improve their performance.

Abstract

We consider a scenario where the learner gets feedback from the chosen action and one
additional action. We construct a novel algorithm that maintains the canonical worst case
performance and simultaneously enjoys improved performance for two kinds of easy settings:

• Stochastic outcomes, where the outcome of each action has a constant expectation

•Arbitrary outcomes with small e↵ective range, where the di↵erences between the
actions’ outcomes are small for each problem instance

With this result we bypass the impossibility result of Gerchinovitz and Lattimore [2016] and
improve on a similar result by Cesa-Bianchi and Shamir [2017] by relaxing the assumptions.

Setting

Prediction with limited advice models sequential decision processes as a repeated game,
where a learner in each round chooses an actionAt out ofK possible actions. The associated
loss `At

t is revealed to and su↵ered by the learner. The learner then chooses a second action
Bt and observes its loss, but this is not su↵ered.

5.3 Prediction with Expert Advice

Notations We are given a K � � matrix of expert losses �a
t , where t 2 {1, 2, . . . } and a 2 {1, . . . , K}.

E
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L
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time

Game Definition

For t = 1, 2, . . . :

1. Pick a row At

2. Observe the column �1t , . . . , �
K
t & su�er �At

t

Performance Measure The performance is measured by regret

RT =
TX

t=1

�At
t � min

a

�
TX

t=1

�a
t

�
.

We will be primarily interested in expected regret E [RT ].

Algorithm We will consider the Hedge algorithm (a.k.a. exponential weights and weighted majority)
for playing this game.

Algorithm 4 Hedge (a.k.a. Exponential Weights), (Vovk, 1990, Littlestone and Warmuth, 1994)

Input: Learning rates �1 � �2 � · · · > 0
�a : L0(a) = 0
for t = 1, 2, ... do

�a : pt(a) = e��tLt�1(a)

�
a� e��tLt�1(a�)

Sample At according to pt and play it
Observe �1t , . . . , �

K
t and su�er �At

t

�a : Lt(a) = Lt�1(a) + �a
t

end for

Analysis We analyze the Hedge algorithm in a slightly simplified setting, where the time horizon T
is known. Unknown time horizon can be handled by using the doubling trick (see home assignment) or,
more elegantly, by a more careful analysis.

The analysis is based on the following lemma.

Lemma 5.2. Let {Xa
1 , Xa

2 , . . . }a�{1,...,K} be K sequences of non-negative numbers (Xa
t � 0 for all a and

t). Let Lt(a) =
Pt

s=1 Xa
s , let L0(a) be zero for all a and let � > 0. Finally, let pt(a) =

e��Lt�1(a)

P
a� e��Lt�1(a�)

.

Then:
TX

t=1

KX

a=1

pt(a)Xa
t � min

a
LT (a) 

ln K

�
+

�

2

TX

t=1

KX

a=1

pt(a) (Xa
t )2 .

33

Fig. 1: Each round a decision a = 1, . . . , K is made and the loss of the decision is su↵ered.

The performance of the learner is measured by the expected regret of the decisions made
in the first T rounds, compared to the best action in hindsight:

RT := E
"

TX

t=1

`At
t

#
� min

a2[K]
E

"
TX

t=1

`at

#
. (1)

Easy data

We consider two models for the losses of each action:

Stochastic losses The first type of easiness the learner can exploit is the restriction that
the losses are generated I.I.D with expectation E[`at ] = µa for all t. Denoting the best
action by a?, the setting can be described in terms of suboptimality gaps �a := µa �µa?.

E↵ective loss range The second type of easiness is that the losses have a small range
within each round. We define the e↵ective loss range, denoted ", such that for every
round t and actions a, a0 we have |`at � `a

0

t |  ".

Fig. 2: Illustration of the e↵ective loss range. The losses span the entire unit interval, but are clustered in each round.

The surprising impossibility result of Gerchinovitz and Lattimore [2016] shows that it is
impossible to achieve a regret which is linear in " if we only observe the played action.

Approach

The key ingredient in our approach is the use of importance weighted di↵erence estima-
tors :

f�`
a

t = (K � 1) (a = Bt)
⇣
`Bt
t � `At

t

⌘
, (2)

and their cumulative first and second moments:

Dt(a) :=
tX

s=1

f�`
a

s, St(a) :=
tX

s=1

⇣
f�`

a

s

⌘2
. (3)

We use an exponential weights algorithm based on these di↵erence estimators instead of
the losses themselves. These allow us to consider not just the loss of an action itself, but the
relative loss of the action within the round, “anchoring” the estimated losses in each round
based on the second chosen action. Intuitively this increases the “resolution” at which the
losses are compared. The main played action At is chosen randomly with the probability
of At = a being

pat =
exp

�
�⌘tDt�1(a) � ⌘2tSt�1(a)

�
PK

a=1 exp (�⌘tDt�1(a) � ⌘2tSt�1(a))
. (4)

Algorithm 1: Second Order Di↵erence Adjustments (SODA)

input: Learning rate scheme ⌘t with ⌘t  (2"(K � 1))�1

Set p1 uniform over the arms, p1 = (1/K, . . . , 1/K).
for t = 1, 2, . . . do

Draw At according to pt;
Draw Bt uniformly at random from the remaining actions [K] \ {At};

Observe `At
t , `Bt

t and su↵er `At
t ;

Construct f�`
a

t by equation (2);
Update Dt(a), St(a) by equation (3);
Define pt+1 by equation (4);

end

The learning rate used in the results below is ⌘t =
q

lnK
maxa St�1(a)+(K�1)2.

Results

The following two theorems show that our algorithm can adapt to both kinds of easiness,
while maintaining the worst case performance.

Theorem 1For arbitrary loss sequences with e↵ective loss range ", the expected
regret of SODA satisfies

RT  O

⇣
"
p

(K � 1)T lnK
⌘
.

Note that a lower bound of inf supRT � O

⇣
"
p
KT

⌘
holds, which is an extension of the

lower bound in Seldin et al. [2014].

Theorem 2For stochastic loss sequences with gaps �a  ", the expected regret of
SODA satisfies

RT 

X

a:�a>0

O

✓
K"2

�a

◆
.

An important point is that the two theorems hold simultaneously.

Conclusion

We have introduced a novel algorithm that adapts to two kinds of easiness simultaneously,
while being robust to worst case data. The improved performance on easy data means that
the algorithm is more suited for real life applications, where the data rarely represents the
worst case. This adaptivity comes only at the expense of a single additional observation
in each round.
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Motivation

In Online Learning we consider the problem of choosing between a number of possible
actions, for instance medical treatments, trading strategies or scientific models. The
learner faces a stream of problem instances, for example patients, with the goal of using
the feedback from each instance to improve the decision strategy in the future.

To be able to make good decisions, the possibilities need to be explored. This however has
a cost since the exploration is done by trying out di↵erent actions, even suboptimal ones.
A good strategy balances this exploration/exploitation tradeo↵.

Commonly strategies are characterised by their worst case performance. Here we consider
how the learner can exploit easier learning scenarios and thereby improve their performance.

Abstract

We consider a scenario where the learner gets feedback from the chosen action and one
additional action. We construct a novel algorithm that maintains the canonical worst case
performance and simultaneously enjoys improved performance for two kinds of easy settings:

• Stochastic outcomes, where the outcome of each action has a constant expectation

•Arbitrary outcomes with small e↵ective range, where the di↵erences between the
actions’ outcomes are small for each problem instance

With this result we bypass the impossibility result of Gerchinovitz and Lattimore [2016] and
improve on a similar result by Cesa-Bianchi and Shamir [2017] by relaxing the assumptions.

Setting

Prediction with limited advice models sequential decision processes as a repeated game,
where a learner in each round chooses an actionAt out ofK possible actions. The associated
loss `At

t is revealed to and su↵ered by the learner. The learner then chooses a second action
Bt and observes its loss, but this is not su↵ered.

5.3 Prediction with Expert Advice

Notations We are given a K � � matrix of expert losses �a
t , where t 2 {1, 2, . . . } and a 2 {1, . . . , K}.
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Game Definition

For t = 1, 2, . . . :
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K
t & su�er �At

t

Performance Measure The performance is measured by regret
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We will be primarily interested in expected regret E [RT ].

Algorithm We will consider the Hedge algorithm (a.k.a. exponential weights and weighted majority)
for playing this game.

Algorithm 4 Hedge (a.k.a. Exponential Weights), (Vovk, 1990, Littlestone and Warmuth, 1994)

Input: Learning rates �1 � �2 � · · · > 0
�a : L0(a) = 0
for t = 1, 2, ... do

�a : pt(a) = e��tLt�1(a)

�
a� e��tLt�1(a�)

Sample At according to pt and play it
Observe �1t , . . . , �

K
t and su�er �At

t

�a : Lt(a) = Lt�1(a) + �a
t

end for

Analysis We analyze the Hedge algorithm in a slightly simplified setting, where the time horizon T
is known. Unknown time horizon can be handled by using the doubling trick (see home assignment) or,
more elegantly, by a more careful analysis.

The analysis is based on the following lemma.

Lemma 5.2. Let {Xa
1 , Xa

2 , . . . }a�{1,...,K} be K sequences of non-negative numbers (Xa
t � 0 for all a and

t). Let Lt(a) =
Pt

s=1 Xa
s , let L0(a) be zero for all a and let � > 0. Finally, let pt(a) =

e��Lt�1(a)

P
a� e��Lt�1(a�)

.

Then:
TX

t=1

KX

a=1

pt(a)Xa
t � min

a
LT (a) 

ln K

�
+

�

2

TX

t=1

KX

a=1

pt(a) (Xa
t )2 .
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Fig. 1: Each round a decision a = 1, . . . , K is made and the loss of the decision is su↵ered.

The performance of the learner is measured by the expected regret of the decisions made
in the first T rounds, compared to the best action in hindsight:

RT := E
"

TX

t=1

`At
t

#
� min

a2[K]
E

"
TX

t=1

`at

#
. (1)

Easy data

We consider two models for the losses of each action:

Stochastic losses The first type of easiness the learner can exploit is the restriction that
the losses are generated I.I.D with expectation E[`at ] = µa for all t. Denoting the best
action by a?, the setting can be described in terms of suboptimality gaps �a := µa �µa?.

E↵ective loss range The second type of easiness is that the losses have a small range
within each round. We define the e↵ective loss range, denoted ", such that for every
round t and actions a, a0 we have |`at � `a

0

t |  ".

Fig. 2: Illustration of the e↵ective loss range. The losses span the entire unit interval, but are clustered in each round.

The surprising impossibility result of Gerchinovitz and Lattimore [2016] shows that it is
impossible to achieve a regret which is linear in " if we only observe the played action.

Approach

The key ingredient in our approach is the use of importance weighted di↵erence estima-
tors :

f�`
a

t = (K � 1) (a = Bt)
⇣
`Bt
t � `At

t

⌘
, (2)

and their cumulative first and second moments:

Dt(a) :=
tX

s=1

f�`
a

s, St(a) :=
tX

s=1

⇣
f�`

a

s

⌘2
. (3)

We use an exponential weights algorithm based on these di↵erence estimators instead of
the losses themselves. These allow us to consider not just the loss of an action itself, but the
relative loss of the action within the round, “anchoring” the estimated losses in each round
based on the second chosen action. Intuitively this increases the “resolution” at which the
losses are compared. The main played action At is chosen randomly with the probability
of At = a being

pat =
exp

�
�⌘tDt�1(a) � ⌘2tSt�1(a)

�
PK

a=1 exp (�⌘tDt�1(a) � ⌘2tSt�1(a))
. (4)

Algorithm 1: Second Order Di↵erence Adjustments (SODA)

input: Learning rate scheme ⌘t with ⌘t  (2"(K � 1))�1

Set p1 uniform over the arms, p1 = (1/K, . . . , 1/K).
for t = 1, 2, . . . do

Draw At according to pt;
Draw Bt uniformly at random from the remaining actions [K] \ {At};

Observe `At
t , `Bt

t and su↵er `At
t ;

Construct f�`
a

t by equation (2);
Update Dt(a), St(a) by equation (3);
Define pt+1 by equation (4);

end

The learning rate used in the results below is ⌘t =
q

lnK
maxa St�1(a)+(K�1)2.

Results

The following two theorems show that our algorithm can adapt to both kinds of easiness,
while maintaining the worst case performance.

Theorem 1For arbitrary loss sequences with e↵ective loss range ", the expected
regret of SODA satisfies

RT  O

⇣
"
p

(K � 1)T lnK
⌘
.

Note that a lower bound of inf supRT � O

⇣
"
p
KT

⌘
holds, which is an extension of the

lower bound in Seldin et al. [2014].

Theorem 2For stochastic loss sequences with gaps �a  ", the expected regret of
SODA satisfies

RT 

X

a:�a>0

O

✓
K"2

�a

◆
.

An important point is that the two theorems hold simultaneously.

Conclusion

We have introduced a novel algorithm that adapts to two kinds of easiness simultaneously,
while being robust to worst case data. The improved performance on easy data means that
the algorithm is more suited for real life applications, where the data rarely represents the
worst case. This adaptivity comes only at the expense of a single additional observation
in each round.
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effective loss range

This is NOT possible with bandit feedback (Gerchinovitz and Lattimore, 2016). 

How much more information do we need?
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What are adversarial examples?

Original Image
Predicted as: Bird
Confidence: 96%

Adversarial Image (Minimization)
Confidence of Bird: 7.6e-14%

(Least probable outcome)

Adversarial Image (Maximization)
Predicted as: Rat
Confidence: 99%
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Adversarial Attack Techniques and Perturbation Intensity

 

 

Attack Technique Perturbation

Model Transferability from 
Resnet50 to

AlexNet       VGG    ResNet152

36%          21%        13%

32%          20%         9%

35%          20%        12%

51%          38%        25%



Embedded Information in Surfaces 
Utilizing Engineered Surface Microstructure 
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?
Microstructure

Information in a surface  
(e.g. a code)


