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Summary

– Gaussian process (GP) regression is a powerful tool in

non-parametric regression providing uncertainty esti-

mates. However, it is limited to data in vector spaces,

thus not suitable for non-linear geometries (see Fig. 1).

– We tackle this problem by defining wrapped Gaussian

processes (WGPs) on Riemannian manifolds, using the

probabilistic setting to generalize GP regression to the

context of manifold-valued targets.

– We experiment on diffusion weighted imaging (DWI)

data, directional data on the sphere and in the Kendall

shape space, endorsing WGP regression as an efficient

and flexible tool for manifold-valued regression.

Figure 1: a) Euclidean GP regression on a 2-sphere and b) WGP regression on
the same data set.

Wrapped Gaussian Distributions
– Let M be an n-dimensional Riemannian manifold and

choose µ ∈ M. Then, if for some multivariate Gaussian

Y ∼ N (0, K) living in the tangent space TµM

X = Expµ (Y) , (1)

then X has a wrapped Gaussian distribution, denoted by

X ∼ NM(µ, K). Furthermore, we define the maps

µNM(X) := µ and CovNM(X) = K. See Fig. 2 a).

– The random points Xi ∼ NMi(µi, Ki), i = 1, 2, are jointly
WGD, if the random point (X1, X2) on M1×M2 is WGD,

that is,

(X1, X2) ∼ NM1×M2

((
µ1

µ2

)
,

(
K1 K12

K21 K2

))
, (2)

for some matrix K12 = KT
21.

Theorem 1 Assume X1, X2 are jointly WGD as in (2), then we
have the conditional distribution

X1|(X2 = p2) ∼
(

Expµ1

)
#

(
∑

v∈A
λvN (µv, Kv)

)
, (3)

where
µv = K12K−1

2 v,

Kv = K1− K12K−1
2 KT

12,

λv =
N (v|0, K2)

P{A} ,

A = {v ∈ Tµ2M | Expµ2
(v) = p2},

P{A} = ∑
v∈A
N (v|0, K2),

(4)

and f#µ(A) = µ( f−1(A)) for measure µ and measurable f , A.

Wrapped Gaussian Processes
– A collection f of random points on a manifold M in-

dexed over a set Ω is a wrapped Gaussian process (WGP),

if every finite subcollection ( f (ωi))
N
i=1, ωi ∈ Ω, is jointly

WGD on MN. We define

m(ω) := µNM( f (ω)) (5)

k(ω, ω′) := CovNM( f (ω), f (ω′)), (6)

called the basepoint function and tangent space covariance
function of f . See Fig. 2 b) for a visualization.

WGP Regression
– The learning goal is as follows: given data DM =

{(xi, pi)}n
i=1 and assuming pi = f (xi) for some map

f : Rd → M, infer f .

– Approach: define a prior distribution f ∼ GPM(m, k)
and condition on the given data using Theorem 1. The

process is given in Algorithm 1 and illustrated in Fig. 3.

Figure 2: a) Illustration of a wrapped Gaussian distribution NM(µ, K) and b)
of a wrapped Gaussian process GPM(m, k).

Figure 3: Visualization of WGP regression. First, a prior basepoint function m
is chosen (dotted black). Given a data point (xi, pi), we compute Logm(xi)

(pi) (in
blue and red). Then, ordinary GP regression is applied in TmM. The resulting
GP is then pushed-forward onto M by the Riemannian exponential Exp.

Algorithm 1: WGP Regression.
Data: DM = {(xi, pi)}n

i=1.

Result: Predictive distribution for p∗|p at x∗.

i. Choose a prior basepoint function m.

ii. Transform DTmM ← {(xi, Logm(xi)
(pi))}N

i=1.

iii. Choose a prior tangent space covariance function k
from a parametric family by optimizing the

hyperparameters.

iv. Using GP prior GP(0, k), carry out Euclidean GP

regression for the transformed data DTmM, yielding the

mean and covariance (µ∗, Σ∗).

vi. End with the predictive distribution

p∗|p ∼ (Expm∗)#(N (µ∗, Σ∗))

Experiments
– We demonstrate WGP regression on three different

manifolds; the 2-sphere, the space of 3-by-3 covariance

matrices, and the Kendall shape space.

– In the sphere experiment, we use the RBF and periodic

covariance functions (kernels). For the rest, we use the

RBF kernel with hyperparameters chosen to maximize

the likelihood of observed data.

Figure 4: a) WGP with prior BPF given by geodesic regression (dotted black)
on a toy data set (grey dots) on S2. b) WGP regression on a motion capture
dataset of the orientation of the left femur of a walking person, prior BPF is
given by principal curve analysis.

Figure 5: Upsampling DTI tensor field by WGP regression. Original data set is
given in a), which we subsample, yielding b), with only 20% of the elements
of the original tensor field are present. The regression is carried out using the
prior BPF given by geodesic regression, shown in c). The resulting predictive
distribution is given in d). The color of the tensors is given by their principal
eigenvector, and in d), white background means uncertain predictions.

Figure 6: WGP regression on a population of Corpus Callosum shapes labeled by
age. Red depicts data points from the test set. In black, the MAP estimates of
the predictive distributions, in green values of the prior BPF at corresponding
ages. Drawn in blue are 20 samples from the predictive distribution.
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