Wrapped Gaussian Process Regression on Riemannian Manifolds

Anton Mallasto Aasa Feragen
mallaastodi.ku.dk aasa@di.ku.dk

Summary

- Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces, thus not suitable for non-linear geometries (see Fig. 1).
- We tackle this problem by defining wrapped Gaussian processes (WGPS) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets.
- We experiment on diffusion weighted imaging (DWI) data, experimental on diffusion weighted imaging (DWI) data, and flexible tool for manifold-valued regression.

Wrapped Gaussian Processes

- A collection f of random points on a manifold M indexed over a set Ω is a wrapped Gaussian process (WGP), if every finite subcollection \((f(\omega_1), ..., f(\omega_n))\) \(\omega_i \in \Omega\), is jointly WGD on \(M^N\). We define

\[
X = \text{Exp}_p(Y),
\]

then \(X\) has a wrapped Gaussian distribution, denoted by \(X \sim \mathcal{N}_M(p, k)\). Furthermore, we define the maps \(\mu_{\mathcal{N}_M}(X) := \mu\) and \(\text{Cov}_{\mathcal{N}_M}(X) := K\), as shown in Fig. 2 a).

- The random points \(X_1, X_2 \sim \mathcal{N}_M(p_i, k_i), i = 1, 2\), are jointly WGD, if the random point \((X_1, X_2)\) on \(M_1 \times M_2\) is WGD, that is,

\[
(X_1, X_2) \sim \mathcal{N}_M(p_1, k_1 \times p_2, k_2),
\]

for some matrices \(K_{12} = K_{12}^T\).

Theorem 1 Assume \(X_1, X_2\) are jointly WGD as in (2), then we have the conditional distribution

\[
X_1|X_2 = x_2 \sim \mathcal{N}(\mu, K_2) = \left(\begin{array}{c}
\mu
\
K_2
\end{array}\right)
\]

where

\[
\mu = \mu_1 - K_{12} K_2^{-1} x_2
\]

\[
K = K_1 - K_{12} K_2^{-1} K_{12}^T
\]

\[
\lambda_{v} = \frac{1}{\text{Tr}(K_0)}
\]

\[
A = \{v \in T_v M | \text{Exp}_v(p_2) = p_1\}
\]

\[
P'(A) = \int_{A} \frac{1}{\text{det}(\lambda_{v})} \text{Exp}_v(p_2) dv
\]

and \(f(A) = \mu(f^{-1}(A))\) for measure \(\mu\) and measurable \(f, A\).

Wrapped Gaussian Processes

- A collection \(f\) of random points on a manifold \(M\) indexed over a set \(\Omega\) is a wrapped Gaussian process (WGP), if every finite subcollection \((f(\omega_1), ..., f(\omega_n))\) \(\omega_i \in \Omega\), is jointly WGD on \(M^N\). We define

\[
m(\omega) := \mu_{\mathcal{N}_M}(f(\omega))
\]

\[
k(x, \omega) := \text{Cov}_{\mathcal{N}_M}(f(x), f(\omega))
\]

called the basepoint function and tangent space covariance function of \(f\). See Fig. 2 b) for a visualization.

WGP Regression

- The learning goal is as follows: given data \(D_M = \{(x_i, p_i)\}_{i=1}^m\) and assuming \(p_i = f(x_i)\) for some map \(f : \mathbb{R}^d \rightarrow M\), infer \(f\).

- Approach: define a prior distribution \(f \sim \mathcal{GP}(m, k)\) and condition on the data given the using Theorem 1. The process is given in Algorithm 1 and illustrated in Fig. 3.

Algorithm 1: WGP Regression

Data: \(D_M = \{(x_i, p_i)\}_{i=1}^m\).

Result: Predictive distribution for \(p_i\) at \(x_i\).

i. Choose a prior basepoint function \(m\).

ii. Transform \(D_M \leftarrow \{(x_i, \text{Log}_m(p_i))\}_{i=1}^m\).

iii. Choose a prior tangent space covariance function \(k\) from a parametric family by optimizing the hyperparameters.

iv. Using GP prior \(\mathcal{GP}(m, k)\), carry out Euclidean GP regression for the transformed data \(D_M\), yielding the mean and covariance \((\mu, \Sigma)\).

v. End with the predictive distribution \(p_i \sim \mathcal{GP}(\mu, \Sigma)\).

Experiments

- We demonstrate WGP regression on three different manifolds; the 2-sphere, the space of 3-by-3 covariance matrices, and the Kendall shape space.

- In the sphere experiment, we use the RBF and periodic covariance functions (kernels). For the rest, we use the RBF kernel with hyperparameters chosen to maximize the likelihood of observed data.

Acknowledgements

This research was supported by Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the Villum Foundation. Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington University.