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Introduction
Metal implants cause streak and cupping artifacts on Computed Tomography (CT) images that may
be addressed using metal artifact reduction algorithms (MARs). For this purpose may be used the
superior anatomical information of a coregistered Magnetic Resonance image (MR), which has led to
the development of the kerMAR (kernel regresion MAR) algorithm. This algorithm estimates uncor-
rupted CT values by combining kernel regression on MR patch / CT value pairs in the uncorrupted
patient volume with a forward model of the CT artifacts.

In this work we present the generative model behind the kerMAR algorithm and consider one of
the optimisation problems important to using it: The estimation of the model hyperparameters by
Empirical Bayes estimation and the Expectation Maximisation (EM) algorithm[1]. Such data-driven
estimation of the hyperparameters ensures self-containment of the algorithm and allows for its easy
incorporation in other MAR algorithms that rely on Bayesian principles such as Maximum A Poste-
riori (MAP) estimation.

The kerMAR model
Consider a set of voxels with indices i ∈ T in a patient volume for which a CT and MR have been
acquired. For these voxels we consider the set {ti,mi}i∈T of measured CT values and the corre-
sponding cuboidal MR patches centered on the voxels. Due to artifact corruption, some of these
CT values may be incorrect; MAR can be viewed as the task of estimating the true CT values {yi},
∀i ∈ T .

To achieve this, kerMAR models the probabilistic relationship between yi, ti and mi, in particular
the generative model:

p({mi, yi, ti}|λ) =
∏
i∈Ti

p(mi, yi, ti|λ) with

p(mi, yi, ti|λ) = p(ti|yi,mi,λ)p(yi,mi|λ).

where λ are the model hyperparameters. The joint distribution of CT values and MR patches is now
learned from the uncorrupted patient data using kernel density estimation[2] with Gaussian kernels
of precisions σ2

y and σ2
m:

p(yi,mi|λ) =
1

|Tu|
∑
n∈Tu

N (yi|yn, σ2
y)N (mi|mn, σ

2
mIM ),

where Tu is the set of uncorrupted voxels (defined as explained later).
The artifact noise model is chosen to be a Gaussian distribution independent of mi with mean yi

and a voxel dependent variance fiσ2
t :

p(ti|yi,mi,λ) = N (ti|yi, fiσ2
t ),

where fi is a known function that scales the artifact noise variance over the image. We use a sigmoid
function with range [0; 1] that decreases with distance to the metal implants, which is additionally
used to define the set of uncorrupted voxels, Tu, by truncating fi such that Tu = [i ∈ T |fi ≤ 0.5].

Thus knowing the generative model, all relevant distributions can be calculated. In particular, ker-
MAR combines using Bayes theorem the distributions p(yi,mi|λ) and p(ti|yi,λ), respectively the
surfaces and green curves on fig. 1 (here for simulated data and assuming 1x1x1 patches); this yields
the posterior p(yi|mi, ti) which, given an observed mi and ti as well as known hyperparameters
λ = {σ2

t , σ
2
y, σ

2
m}, can be averaged over to estimate the true CT value. Graphically, this corresponds

to multiplying the red and green curves on fig. 1 and averaging over the result; analytically it becomes
the following weighted average:

ŷi =

∫
yi
yip(yi|mi, ti)dyi =

∑
n∈T

µinv
i
n with µin =

σ−2
t

σ−2
t + σ−2

y
ti +

σ−2
y

σ−2
t + σ−2

y
yn (1)

and vin =
N (ti|yn, fiσ2

t + σ2
y)N (mi|mn, σ

2
mIM )∑

n′∈TuN (ti|yn′, fiσ2
t + σ2

y)N (mi|mn′, σ
2
mIM )

(2)

The kerMAR estimate thus becomes effectively a weighted average of a linear combination of the
measured corrupted CT value ti and the CT values in the uncorrupted patient volume, {yn}n∈Tu.

Estimation of the hyperparameters (λ) using Empirical Bayes and
Expectation Maximisation
For the kerMAR model to be self-contained, the hyperparameters λ = {σ2

y, σ
2
m, σ

2
t} must be chosen

in an informed manner. To understand how the choice of hyperparameters influences the kerMAR
model, consider the illustration of p(yi,mi|λ) for three different parameter choices on fig. 1. The
surfaces were calculated using the kerMAR model on simulated data; the middle surface in particular
used the simulation parameters and is accordingly the more plausible description of the data. This

motivates the use of our generative model to fit the parameters, which may be done by considering
the marginal likelihood of the data given the hyperparameters. After some algebra, this becomes:

p({mi, ti}|λ) =
∏
i∈T

∫
yi
p(mi, yi, ti|λ)dyi with∫

yi
p(mi, yi, ti|λ)dyi =

1

Tu

∑
n∈Tu

N (ti|yn, σ2
y + fiσ

2
t )N (mi|mn, σ

2
mIM ),

Empirical Bayes (maximum likelihood) parameter estimation works by optimising this function, or,
more tractably, its logarithm. This optimisation task is noticeably simplified and little affected in the
end results by setting fi→ 0 ∀i ∈ Tu and 1 elsewhere, leading to the optimisation problem:

arg max
λ
{Φ(λ)} with Φ(λ) =

∑
i∈Tu

log

( ∑
n∈Tu

N (ti|yn, σ2
y)N (mi|mn, σ

2
m)

)
+

∑
i/∈Tu

log

( ∑
n∈Tu

N (ti|yn, σ2
t + σ2

y)N (mi|mn, σ
2
m)

)
Off-the-shelf optimisation techniques such as gradient ascent or Newton’s method could now be em-
ployed. However, to take advantage of the shape of the cost function and get significant speed gains,
we opt to use Jensen’s inequality (log(

∑
n vnxn) ≥

∑
n vn log(xn) for

∑
n vn = 1), to derive an

Expectation Maximisation (EM) lower bound on the cost function that depends on a guess on the
parameters λx. This lower bound gains the following useful qualities: 1.) It consists of sums of logs
rather than logs of sums, making it more tractable; and 2.) by the EM principle[1], maximising it is
equivalent to maximising the true objective function. It looks as follows:

Q(λ|λx) =
∑
i∈T

∑
n∈Tu

vin log(N (i|mn, σ
2
mIM )) +

∑
i∈Tu

∑
n∈Tu

vin log(N (ti|yn, σ2
y))

+
∑
i/∈Tu

∑
n∈Tu

vin log(N (ti|yn, σ2
t + σ2

y)),

where the EM-weights vin
(x) are calculated at the hyper-parameter estimate at iteration x using eqn.

(2). The EM-algorithm starts from an initial guess λ0 that is iteratively updated by alternately calcu-
lating the weights (the E-step) and maximising the lower bound (the M-step), which can be done in
closed form.

Results and Discussion
We show on fig. 2, along with the uncorrected Filtered Back Projections (FBP) on which they were
calculated, the kerMAR images using the estimated parameters (λ) as well as scaled to be respec-
tively lower and higher. This emulates the situation on fig. 1 (top-down on fig. 3 corresponding to
right-left on fig. 1). The red arrows point to regions where the empirically chosen parameters ap-
parently outperformed the scaled versions, while the blue arrows show cases where gains could be
had by using larger variances. While the assignment of the arrows is somewhat subjective, the large
ratio of red to blue arrows along with the consistently good performance when using the estimated λ
is encouraging for the model, as this implies that the model fits the data well and may be used in a
self-contained fashion without further adjustment of hyperparameters.

In addition to providing apparent improves over the scaled parameter versions, the use of automat-
ically tuned hyperparameters is of great utility both when transferring the application of the model
to different image sets and when using the model as a part of more complex algorithms with added
parameters, into which it may fit without having to retune anything. An example is Maximum A
Posteriori CT reconstruction, in which the distribution p(yi|mi, ti) may readily be used as a prior.

Conclusions
We have presented the kerMAR generative model and inference algorithm for metal artifact reduc-
tion, and considered tuning its hyperparameters Empirical Bayes and the EM algorithm. Using the
thusly chosen parameters with kerMAR led to improved artifact reduced images than using scaled
versions of the parameters, underlying both the feasiblity and utility of tuning the hyperparameters
on the data.
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