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Motivation

Our goal is to model the evolution and variation of medical images. As a motivational example

consider the problem of modelling the evolution of childrens brains (Fig. 1). In general, brains

develop similar features such as ventricles and the corpus callosum. However, no human being

are alike so each subject will evolve in a different manner giving a variation in the evolution of the

brains. A big focus has been on modelling the population trend. We present a model estimating

not only the population trend, but also the variation of the data during evolution. This will be

pursuid by considering stochastic image registration.

Euclidean Equivalence

Let us describe the presented model based on Euclidean data.

Consider growth curves of children shown in Fig. 3. In this ex-

ample, we seek to model the time evolution of the distribution

of heights of children. Let xij be the j’th time observation of

subject i, β be the population trend, αi the subject individual

intercept and εij the noise, then

xij = αi + βtij + εij, tij ∈ (0, 20]

The goal is to estimate the noise εij and population trend β.

Figure 1: Example of the brain evolution of a child from 1 week to 10
years.

Figure 2: Modelling the evolution of variation of medical images by
stochastic processes.

Figure 3: Growth curves of
children

Figure 4: Visualization of the dependency between φ−1

and v. GV is the space of diffeomorphisms solving (2).

Stochastic Shooting

Consider the situation where n subjects have been

observed at time t = 0 and t = 1. The presented

model can given an initial image Ii
0 define a stochas-

tic deformation of Ii
0 which transition distribution

describes the uncertainty of the subject at t = 1. The

stochastic deformations of images are defined in the

LDDMM framework where deformations minimize,

E(v0) =
1
2
‖v0‖2

V +
n

∑
i=1
‖Ii

0 ◦ φ−1
1 − Ii

1‖2
L2, (1)

for a diffeomorphism φ−1
1 and an initial point v0 for

a time-varying velocity field vt. In the determinis-

tic LDDMM model the diffeomorphisms minimizing

(1) is the endpoint of a flow solving (2) with vt solv-

ing (3) (the deterministic part). We will consider the

stochastic deformation given by a similar construc-

tion as the deterministic version,

dφ−1
t = −Dφ−1

t vtdt −
d

∑
k=1

Dφ−1
t σk ◦S dBk

t (2)

where the time-varying velocity field solves,

dvt = −ad†
vtvtdt −

d

∑
k=1

ad†
σk

vt ◦S dBk
t (3)

Here Bk
t denotes Brownian motions and σk are noise

fields on the domain of the images. For a visualiza-

tion of the model see Fig. 2. When parameters of the

noise fields σk are known, the model can sample ob-

servations for new subjects at time t = 1 and hence

summarize the uncertainty and variation of the evo-

lution of the subject.

Method of Moments

The Fokker-Planck equation (left (4)) describes the evolution of the density func-

tion p(x, t) for a Itô stochastic process Xt. Based on the Fokker-Planck equation,

the evolution of moments of the distribution of Xt is given by,

∂

∂t
p(x, t) = L∗p(x, t),

d
dt
〈h(Xt)〉 = 〈Lh(Xt)〉, (4)

where L is the Kolmogorov-operator, which can be found based on Itô’s lemma.

The goal is to match the moments of the data with the transition moments of

the stochastic processes, φ−1
t , vt. That is: first solving the moment ODE in (4)

results in the transition moment of φ−1 or v, e.g. the first moment 〈φ−1
1 〉, which

is matched to the first moment of the data for the field φ−1.

Problem: Can only be done when we know the deformation fields.
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Figure 5: Matching moments of distributions. (green) the transition distribution of the
blue process. (yellow) the data distribution.
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Figure 6: (left) 1. gradient, (middle) 2. gradient and (right) function values over iterations.

Preliminary Results

As a first trial we simulate a dataset of tranformed circles based on a noise

field shown in Fig. 7. We will estimate the location of the noise field, σ. The

noise field is modelled as a Gaussian gradient field with location (0.6, 0.5) and

variance 0.015. In Fig. 7 is shown two circles from the dataset simulated by

the model. The estimated location for the noise field based on the method of

moments is: Est.: (0.583, 0.501).
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Figure 7: (left) noise field, (middle) and (right) examples of simulated circles.


