

$$\phi^{\theta}(x;1) = x + \int_0^1 v^{\theta} \left(\phi^{\theta}(x;\tau)\right) \, \mathrm{d}\tau$$

Søren Hauberg¹ sohau@dtu.dk

On the face datasets, the ST-CPAB yields a

On the other datasets, there is no clear gain

W	CelebA	Unrestricted LFW
	0.712	0.893
	0.734	0.912
	0.742	0.921
	0.751	0.936
	0.756	0.954
	0.870	0.955

Learning a "squarification" of the face, effectively remove the background

Original

Affine

Diffeomorphic

Affine + Diffeomorphic

The proposed diffeomorphic transformation have shown: • Good optimization properties compared to standard ST transformations • Intuitive "squarification" transformation, given insight into possible simple data augmentation scheme • Performance gain facial benchmark tasks State-of-the-art on unrestricted LFW dataset^[4]

Optimizing non-invertible ST-layers is prone to instability

Invertible ST-layers are robust towards ----- Affine-Diff choice of a learning rate, compared with non-invertible STlayers

Advantages of the proposed ST-layer • Robustness

- Flexibility
- Low dimensional

Disadvantage

- Computational times
- (only during learning)

Transformed samples from different datasets

CIFAR LFW CelebA Fashion