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MOTIVATION

Issue:

• Deep learning or in general machine learning algorithms require immense amount of 

data to achieve high performance and to generalize well. (Norvig, 2011; C. Sun et al., 

2017)

• Data acquisition and annotation can be highly time consuming and prone to errors, 

especially in domain specific applications (Montani and Honnibal, 2017; Y. Sun et al., 

2017)

Possible solution:

• Use generative modelling to produce artificial data samples that mimics properties of 

real data samples

• Artificial data samples might be used for pretraining deep learning models, 

while the valuable real data is saved for finetuning the model.

• Generated data samples might provide different plausible combinations of 

modalities, than are present in the original real data

• E.g. color, texture, shape

Challenges:

• Generate realistic looking data

• Model high intra- and inter-class variance in the artificial data

• And possible control of these variations through conditioning

METHODOLOGY

Generative adversarial networks: (Goodfellow et al., 2014)

• Minmax game between two players:

• A discriminator, distinguishing real and fake data samples

• A generator, producing artificial sample in an effort to cheat the discriminator.

min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝔼𝑥~𝑛𝑜𝑖𝑠𝑒 log(1 − 𝐷 𝐺 𝑧

InfoGAN: (Chen et al., 2016)

• Unsupervised condition for structuring/controlling the appearance of the generated 

samples. 

• Try to maximize the mutual information between the an additional latent variable 

generator input and the generated samples

• Formally implemented as an additional regularization term in the objective:

min
𝐺

max
𝐷

𝑉𝐼 𝐷, 𝐺 = 𝑉 𝐷, 𝐺 − 𝜆𝐼 𝑐, 𝐺 𝑧, 𝑐

min
𝐺,𝑄

max
𝐷

𝑉InfoGAN 𝐷, 𝐺, 𝑄 = 𝑉 𝐷, 𝐺 − 𝜆𝐼 𝐺, 𝑄

EXPERIMENTS & RESULTS

Setup for creating artificial MNIST colour images:

• Increasing the challenge by randomly colouring of MNIST data

• Changing the generator to output a RGB image, instead of grayscale

• Latent variable design

• 3 continuous variables (random uniform in the range [-1;1])

• 1 categorical variable (one-hot encoded, K = 10, p = 0.1)

• Able to capture the underlying categorical structure

• Able to capture dominating continuous variations in the data (color, shape, style, ect.)

Improvements to be made:

• Higher resolution is needed for more details in the generated images (Karras et al., 

2017; Zhang et al., 2017)

• Better objective formulation to increase training stability (Gulrajani et al., 2017; 

Salimans et al., 2018)
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Figure 2: Categorical variations. Each figure show the representation learned for each categorical latent variable. Each is generated by interpolating along the first 
and second continuous variable (x-axis and y-axis respectively).

Figure 1: continuous variations. Each figure show different combinations of interpolating along two of the  
continuous latent variables (one along the x-axis and one along the y-axis), with the last one fixed at 0.
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Source code:
https://github.com/Leminen/infoGAN-collections
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