

PERTURBATION ANALYSIS OF ADVERSARIAL **ATTACKS IN THE SPATIAL DOMAIN** Utku Ozbulak^{1,2}, Arnout Van Messem^{1,3}, Wesley De Neve^{1,2}

¹ Center for Biotech Data Science, Ghent University Global Campus, Incheon, South Korea ²Department for Electronics and Information Systems, Ghent University, Ghent, Belgium ³Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium

What are Adversarial Examples?

Average model transferability and perturbation rate of 1000 low-confidence adversarial examples generated with multiple methods.

Transferability from ResNet50 to Other Models

- Our analysis show that each technique follows a unique perturbation pattern even though they
- Rate of transferability for adversarial examples
- The rate of transferability is higher when the perturbations focus on the main object of the

- Finding the best attack that produces robust adversarial with minimal perturbation is not easy due to non-convex nature of the optimization.
- Detecting adversarial examples still stands as one of the biggest challenges in the field with no effective solution yet.

<u>Technique</u>	<u>Perturbation</u>	<u>AlexNet</u>	<u>VGG16</u>	<u>ResNet152</u>
GA [2]	6.2%	36%	21%	13%
L-BFGS[3]	5.7%	32%	20%	9%
I-FGS _[4]	6.1%	35%	20%	12%
C&W[5]	5.7%	51%	38%	25%

Even though multiple defense mechanisms are proposed, when the defense is incorporated into the optimization in a white-box attack, it is trivial to generate adversarial examples that bypass the proposed defense.

[1] K. He, X. Zhang, S. Ren, J. Sun. *ImageNet Classification with Deep Convolutional Neural Networks*

[2] D. Erhan, Y. Bengio, A. Courville, P. Vincent. *Visualizing Higher-layer Features of a Deep Network*

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R. Fergus. Intriguing Properties of Neural Networks

[4] A. Kurakin, I. J. Goodfellow, S. Bengio. Adversarial Examples in the Physical World

[5] N. Carlini, D. Wagner. *Towards Evaluating the Robustness of Neural Networks*

utku.ozbulak@ugent.be github.com/utkuozbulak Ghent University Global Campus, Korea